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Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is 
studied in pumping and copumping ranges under long-wavelength and low-Reynolds- 
number assumptions. The effect of the peripheral-layer viscosity on the time-averaged 
flux and the mechanical efficiency is studied. The formation and growth of the trapping 
zone in the core and the peripheral layer are explained. It is observed that the bolus 
volume in the peripheral layer increases with an increase in the viscosity ratio. The 
limits of the time-averaged flux Q for trapping in the core are obtained. The trapping 
observed in the peripheral layer decreases in size with an increase in Q but never 
disappears. The development of the complete trapping of the core fluid by the 
peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The 
effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed 
‘that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent 
in the entire range of copurnping. 

1. Introduction 
‘Peristalsis’ is a mechanism for pumping fluid in a tube by means of a moving 

contractile ring around the tube, which pushes the material onward. This is analogous 
to constricting a distensible tube with one’s fingers and moving the occlusion forward 
along the tube. The peristaltic wave generated along the flexible walls of the tube 
provides an efficient means of transport of fluids in living organisms and in industrial 
pumping. It is an inherent property of many syncytial smooth muscle tubes, since 
stimulation at any point causes a contractile ring around the tube. In general, 
peristalsis induces two types of fluid movements, namely propulsive and mixing. The 
peristaltic propulsive movement is observed in the oesophagus, the gastrointestinal 
tract, bileducts, the ureter and other glandular ducts throughout the body (Guyton 
1986). The same principle has been adapted by engineers to pump corrosive material 
and fluids which are to be kept away from the pumping machinery. 

Even though peristalsis is a well-known pumping phenomenon observed in biological 
systems for many decades, the first attempt to study the fluid mechanics of peristaltic 
transport is by Latham (1966). Following this experimental work, Burns & Parkes 
(1967) developed a mathematical model for homogeneous fluids in a channel idealized 
under the assumption of inertia-free motion due to an infinite train of peristaltic waves. 
The corresponding axisymmetric case was discussed by Barton & Raynor (1968). 
Later, the small-amplitude assumption was replaced by infinite wavelength by Shapiro, 
Jaffrin & Weinberg (1969). They studied two interesting phenomena associated with 
peristaltic flow, namely the material reflux and the trapping of the fluid between 
successive contractions for two-dimensional channels and axisymmetric tubes. The 
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effect of inertia and streamline curvature on peristaltic motion was investigated for a 
two-dimensional channel by Jaffrin (1 973) and for axisymmetric tubes by Manton 
(1975). The effect of the intensity of the Poiseuille flow on the peristaltic motion was 
studied by Mittra & Prasad (1974). Liron (1976) examined the efficiency of peristaltic 
pumping. For a complete review of the work in the field one may refer to Jaffrin & 
Shapiro (1971), Rath (1980) and Srivastava & Srivastava (1984). In most of the studies 
at least one of the parameters, namely the amplitude ratio, the ratio of the channel 
width to the wavelength and the Reynolds number, is assumed to be small. Recently, 
Takabatake, Ayukawa & Mori (1988) in their numerical study of peristaltic transport, 
have relaxed all the restrictions on these parameters. 

While the principle of peristaltic pumping is well understood from the analyses 
mentioned above, it is observed that many biological ducts undergoing peristalsis are 
coated with a fluid having different properties from that of the pumped fluid (Best & 
Taylor 1958). Shukla et al. (1980) were the first to attempt to study the effect of the fluid 
coating on peristaltic transport by considering the peristaltic motion of two immiscible 
Newtonian fluids in channel and axisymmetric tube geometries. They specified the 
interface shape, independent of the fluid viscosities, and used a trivial solution of the 
law of conservation of mass over one wavelength. For the two-dimensional channel, 
Brasseur, Corrsin & Lu (1987) have proved the invalidity of the above-mentioned 
analysis in the limit of infinite peripheral-layer viscosity, since the principle of mass 
conservation is not satisfied independently in the core and the peripheral layer across 
any cross-section of the tube. The influence of peripheral-layer viscosity on trapping 
and reflux in the pumping range (i.e. pumping from a region of lower pressure to a 
region of higher pressure) has been presented by Brasseur et al. However, the analysis 
of pressure-assisted peristaltic flow of a single fluid (copurnping) in a two-dimensional 
channel by Pozrikidis (1987) shows the existence of a trapping region adjacent to the 
wall. 

In this paper, the peristaltic transport of two fluids in an axisymmetric tube is 
considered. Following Brasseur et al. (1987), the interface, which is also a streamline, 
is determined from a sixth-degree equation in the core thickness. The present analysis, 
apart from being an adaptation of the channel geometry discussed by Brasseur et al. 
(1987) to pipe geometry, emphasizes the trapping under copumping conditions 
(pressure-assisted peristaltic transport) and the detachment of the trapped bolus from 
the centreline. The following new features are observed in our study. The non- 
uniqueness of the interface and its closure are observed only for a finite range of values 
of the time-averaged flux, Q. In this range, the non-uniqueness of the interface results 
in the failure of the present method. Beyond this range, for sufficiently large Q the 
trapped bolus is observed to lie completely within the peripheral layer. The trapped 
bolus shrinks and moves towards the wall with a further increase in Q. Further, the 
trapping, once established, never vanishes for any finite increase in Q. The same 
phenomenon occurs for the case of a single fluid. Therefore, an upper bound on Q for 
trapping, as given by earlier authors, does not exist. The pumping characteristics such 
as the reflux, the trapping and the variation of time-averaged flux with pressure rise are 
studied as functions of the peripheral-layer fluid viscosity. The trapping phenomenon 
is discussed at length in both the pumping and copumping ranges. Under copumping 
the increase in the viscosity ratio gives rise to trapping in the peripheral layer near the 
wall. 
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FIGURE 1. Peristaltic transport in a stationary frame of reference. 

2. Mathematical formulation and solution 
Consider the peristaltic transport of a bio-fluid consisting of two immiscible and 

incompressible fluids of different viscosities ,ul and p2 occupying the core and 
peripheral layers in a circular tube of radius a. The axisymmetric geometry facilitates 
the choice of the cylindrical polar coordinate system (R,8,Z) to study the problem. 
The wall deformation due to the propagation of an infinite train of peristaltic waves 
is given by 

R = H ( 2 , t )  = a+bsin-(Z-ct), 

where b is the amplitude, h is the wavelength and c is the wave speed. The subsequent 
deformation of the interface separating the core and the peripheral layer is denoted by 
R = H,(Z, t )  (figure 1) which is not known a priori. 

2.1. Equations of motion 
Under the assumptions that the tube length is an integral multiple of the wavelength 
h and the pressure difference across the ends of the tube is a constant, the flow becomes 
steady in a frame (Y, 8, z )  moving with velocity c away from the fixed frame (R,  8 , Z )  
(Jaffrin & Shapiro 1971) and the transformation is given by 

2n 
h 

r = R, 8 = 8, z = Z-ct, 

9 = !P-iR2 and p(Z, t) = p(z). 
In (lb) %’ and !P are the stream functions in the moving and stationary frames 
respectively. The assumption of negligible surface tension on the interface makes the 
pressure p remain a constant in any cross-section of the tube given by z = constant. 
Using the non-dimensional quantities 
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and 

where i? and w are the radial and axial velocities in the wave frame, in the equations 
governing the motion, under the lubrication approach, we get (dropping the bars) : 

The dimensionless boundary conditions are 

where q and q, are the total and the core fluxes respectively across any cross-section in 
the wave frame. Further, the velocity and the shear stress are continuous across 
the interface. The peripheral-layer flux is given by q2 = 4-9,. It follows from the 
incompressibility of the fluids and the lubrication theory that q, q1 and q2 are 
independent of z.  The average non-dimensional volume flow rate over one period 
T( = h/c)  of the peristaltic wave is defined as 

Q = + l o T [ ( w +  l ) r d t  

= q+TJu l T  h'drdt 

= q+ 1 +;e2 

The streamfunction is determined using the boundary conditions mentioned earlier 
together with the boundary conditions at the ends of the pipe given by specifying Q or 
the pressure difference Ap across one wavelength. 

2.2. Solution 
Solving equation ( 3 )  together with the boundary conditions (4)-(6), we obtain the 
stream function in the core and the peripheral layer as 

, O < r < h , ,  
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The stream function for the case of a single fluid is obtained by putting p = 1 in 
either ( 9 a )  or (9b). The pressure gradient is obtained by using equation (9) in (3) as 

Integrating (10) over one wavelength, we get the pressure rise (drop) over one cycle of 
the wave as 

Ap = - 8pqZ1 - 8p12 

= - 8p(Q - 1 - $ 6 2 )  I, - 8pZ2, (1 1) 

where 

The time-averaged flux at zero pressure rise is denoted by Qo and the pressure rise 
required to produce zero average flow rate is denoted by Apo. 

2.3. The equation for the interface 
The interface is also a streamline as seen from the boundary condition (7). For a given 
geometry of the wave and the time-averaged flux Q, the unknown interface h,(z) is 
solved from (9) using the boundary condition (7). Substituting (7) in (9), we get the 
algebraic equation governing the interface h,(z) as 

K(hJ = (/A- l)h!+[(2-p)(q+h2)-ql(l -p)]h:-h2(h2+2q)hhf+qlh4 = 0. (12) 

Since q and q1 are independent of z,  using h, = 01 at z = 0 in (12) we get 

(13) 
q1 = a2 [(1-LL)C1.4+(l+2q)-(2-pu)(l+q)a21 

1 +(p- ila4 

Given Q, p and 6 the algebraic equation (12) is solved for h, at every z to give the 
inter face. 

Equation (12) is cubic in hi and, therefore, can have at most three positive real roots. 
The interface is well defined whenever there exists a single root of h, in the interval 
(0, h). It is seen that 

Case (i): when ql ,  q2 ,< 0 or q,, q2 2 0 it is seen from (14) that either one root or three 
roots exist for a given z. Case (ii): when q, < 0, q2 > 0 or q1 > 0, q2 < 0, either there 
are no roots or two roots for a given z, i.e. the interface whenever it exists is not 
unique. The non-existence of h, for some z makes it impossible to calculate Ap in terms 
of using (ll),  making the method inapplicable. It can be easily seen that the 
transition from case (i) to case (ii) occurs when q1 = 0 and the reverse transition 
occurs when q2 = 0. 

K(0) = q1 h4 and K(h) = -pq2 h2. (14) 

3. Discussion of the results 
3.1. The interface 

The limits of Q for a non-unique interface are obtained from the equalities q1 = 0 and 
q2 = 0 in case (i) of the previous section using (8) and (13) as 

- €2 1+(p--)014 
Q c , =  2+2+(p-2)a2 ( 1 5 4  
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P- a 0.98 0.9 0.8 0.7 

(a)  0.01 [Qd 1.1581 1.0830 0.9984 0.9238 
2.3733 2.0245 1.8314 1.6747 
0.8204 0.8415 0.8644 0.8803 

0.5 I 1.1432 1.0360 0.9446 0.8756 
13.7865 3.7166 2.3889 1.9054 

1 1.1419 1.0203 0.9153 0.8423 
5.4432 2.9578 2.1408 
0.9140 0.9140 * 
0.9981 0.8531 0.7450 

19.2557 7.5089 4.0239 
0.9592 
0.9943 0.8382 0.7139 

36.5216 13.1978 6.3778 
0.973 1 

100 ( 1.1404 0.9904 0.8220 0.6752 

1 2 3 3 ~ : ~ ~ ~ ~  
347.3058 115.5978 48.7483 

(b)  0.01 [ Q C I  1.2901 1.2230 1.1304 1.0637 
2.5133 2.1645 1.9714 1.8147 
1.2108 * * * 

0.5 1.2832 1.1760 1.0846 1.0156 
‘13.9265 3.0566 2.5200 2.0454 1 1.2473 * * * 

1 1.2819 1.1603 1.0053 0.9823 
‘25.5725 5.5832 3.0978 2.2807 1 1.2539 * * * 

5 1.2807 1.1382 0.9931 0.8850 
‘118.7410 19.3957 7.6489 4.1639 ‘1 1.2654 * * * 

10 1.2805 1.1343 0.9782 0.8539 
36.6616 13.3378 6.5178 

100 1.2804 1.1304 0.9620 0.8152 
1 3 3  1.4929 347.4458 115.7378 48.8883 

1 0.8871 0.8917 0.8962 * 

5 

* * 
10 

* * 

* * * 

* * * 

* * * 
TABLE 1. Limiting fluxes Q,, and QC2 for interface closure: (a )  6 = 0.6, (b) F = 0.8. 

and 

respectively. It is easily seen that Qc2 - Q,, 2 0 for all 0 < a 9 1 and ,u > 0. The limits 
Q,, and QC2 and the time-averaged ff ux for zero pressure rise Q, are given in table 1 (a)  
for e = 0.6 and in table 1 (b) for e = 0.8 for various values of p and a. 

From table 1, we observe that for a given 0 < a < 1, Q,, and Q,, are monotonically 
decreasing and increasing functions of ,u respectively and hence the range of non- 
unique roots for the interface (i.e. Q,, - Q,,) increases with an increase in the viscosity 
ratio p. Further, the time-averaged flux Q, is found to increase with an increase in the 
viscosity ratio and E which is similar to the observation by Brasseur et al. (1987) for a 
channel geometry. It is also seen that Q, decreases with an increase in a. The 
calculation of Qo is not possible whenever Q,, lies in the pumping range (Ap 2 0) owing 
to the inability to use equation (ll),  as indicated in the table with asterisks. It is 
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FIGURE 2. The shape of the interface for a = 0.8, Q = 0.1, E = 0.5 
and for different viscosity ratios. 
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FIGURE 3. The variation of Q with Ap for different p with E = 0.6 and a = 0.98: 

___-__ , results of Shukla et al.; -, results of the present model. 

interesting to observe that Q,, always lies in the copumping range (Ap < 0) as the 
corresponding flow rate in the wave frame is positive. The choice of the parameters ,u, 
a and E in the present analysis is more restricted for both pumping and copumping than 
the two-dimensional case discussed by Brasseur et al. (1987). Table 1 gives the 
guidelines for choosing appropriate parameters to get a well-defined interface in both 
the pumping and copumping ranges. 

The shape of the interface for different viscosity ratios with ct = 0.8, E = 0.5 and 
Q = 0.1 (< Q,,) is depicted in figure 2. The variation of the interface shape is similar 
to the channel geometry studied by Brasseur et al. (1987), i.e. low viscosity gives rise 
to a thicker peripheral layer in the dilated region. The uniform sinusoidal interface 
shape given by Shukla et al. (1980) is never obtained. The variation of pressure rise 
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FIGURE 4. Variation of mechanical efficiency with Q for different p with 6 = 0.6 and a = 0.98. 

with time-averaged flux is calculated from equation (1 1) for different viscosity ratios 
and is shown in figure 3. We observe that the larger the viscosity ratio the greater the 
pressure rise against which the pump works. The sensitivity of the time-averaged flux 
to the pressure rise decreases with an increase in the viscosity ratio. The disparity 
between the present results and those of Shukla el al. (1980) is small for small ,LL and 
significant for large ,LL. 

Another important physical quantity of interest in pumping performance is the 
mechanical efficiency of pumping given by 

where 
h4 dz 

4 = j : h 4 + ( / 4 ) h : .  

The numerator denotes the average rate of work done by the fluid over one wavelength 
against the pressure rise and the denominator denotes the average rate of work done 
by the wall over one wavelength, both being averaged over one period of the wave. The 
mechanical efficiency E as a function of Q is plotted in figure 4 for different p and it 
is observed that the pumping efficiency is greater for larger viscosity ratio. This is 
obvious since the peristaltic motion in the pumping range depends on the viscous forces 
originating from the wall. 

3.2.  Reflux phenomena 
Reflux is defined as the presence of some fluid particles whose mean motion over one 
cycle is against the net pumping direction. Jaffrin & Shapiro (1971) have emphasized 
that this phenomenon should be studied in the fixed frame of reference using the 
Lagrangian method. Following Jaffrin & Shapiro (1971), Q, is defined as the 
dimensionless volume flow rate between the axis of the tube and a streamline 
$ = constant in the fixed frame and, hence, 

Q# = 2i,h+rz = 2 F .  (1 6) 
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FIGURE 5. (a) Q$ versus 1c.* with fixed Q and different p. (6)  Magnification of 5(a) for Q$ > Q. 

Averaging (16) over one period of the wave, we get 
1 

Q, = 2$ + 1 r2($, z )  dz. (17) 

Now define Qf = Q,/Q, $* = 2$/q, where Q and q are the values of Q, and $ at 
the wall. Figure 5 shows the variation of Qf as a function of $* for a fixed value of 
Q. If Qf increases with an increase in $* then the motion of the particles is always in 
the pumping direction. Shapiro et aZ. (1969) have shown for a single fluid that a reflux 
layer exists near the wall whenever Q$ increases to a value greater than unity and 
decreases to unity a t  the wall. From figure 5(a)  the graph corresponding to p = 0.01 
shows that Q$ increases steadily with an increase in $* and attains unity only at the 
wall, which implies the absence of reflux. For p = 0.5, 0.999, and 10, there is a reflux 
layer adjacent to the wall as seen from figure 5(b) and the reflux zone widens with an 
increase in p. In order to obtain the limits on Q for reflux, we expand r in powers of 
$-+q, using equation (9b), for a given value of $ near the wall. The first two terms 
are considered, the higher-order terms being negligible. Using this expression for r in 
(9), the reflux condition Qf > 1 is obtained as 

0 

which implies that Ap > 0. This shows that the reflux occurs in the entire pumping 
range and is absent in the entire copumping range irrespective of the viscosity ratio, 
unlike the case of channel geometry. 

3 . 3 .  Trapping 
Following Brasseur et aZ. (1987), the trapping limits are given by the values of Q when 
$ = 0 at some r other than the centreline r = 0. First, we restrict our analysis to the 
case when the interface between the two fluids lies outside the trapping region. Hence, 
we choose equation (9a) to determine the trapping limits. By setting $ = 0, we get 

h2(h2 + 2q)-(p- 1) hf [h2 - 2(q + h2)] 
y 2  = 

+ h2) 
When trapping occurs, r2 > 0 for some z.  Therefore, both the numerator and the 
denominator should be of the same sign. Since the denominator attains maximum and 
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FIGURE 6. Trapping and reflux limits for different ,u with a = 0.98. 
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FIGURE 7. Streamlines in the wave frame for pumping with 01 = 0.8, c = 0.6, ,u = 0.5. (a) Q = 0.5, 
trapping; (b)  Q = 0.01, no trapping. The dashed line shows the interface. 

minimum values at z = a and respectively, we get the following lower and the upper 
trapping limits for Q for trapping attached to the centreline: 

As h, is a function of Q, these equations are solved for the trapping limits iteratively. 
Figure 6 shows the reflux and trapping limits for different viscosity ratios. The area of 
the trapping region increases with the viscosity ratio. It is obvious that in the limit of 
total occlusion, the fluid is trapped irrespective of the viscosity ratio. Reflux occurs in 
the entire domain 0 < Q/Q, < 1 for all values of p, a, and E and is indicated in figure 
6. The streamlines in the wave frame for pumping with CY = 0.8, E = 0.6, and p = 0.5 
for different values of Q are shown in figure 7. From figure 7(b)  it is observed that there 
is no trapping for Q = 0.01. When Q is increased, i.e. for Q = 0.5, trapping occurs as 
shown in figure 7(a) .  

In the copumping range, the streamlines shown in figure 8 indicate that for Q = 0.94 
(< Q,,), a trapping region exists in the core layer and the interface lies completely 
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FIGURE 8. Streamlines in the wave frame for copumping with CL = 0.8, E = 0.6, p = 0.5. (a) Q = 0.94, 
trapping in the core layer; (b )  Q = 15.0, trapping in the peripheral layer; ( c )  Q = 50, trapping. 

above the trapping region. For fluxes between Qcl and Qc2, there is a possibility of the 
interface getting trapped, which is beyond the scope of the present study. For a 
sufficiently large value of Q, one of the streamlines splits at the trough of the wavy wall 
and the trapping zone shifts to the peripheral layer. Figure 8(b) depicts the trapping 
region for Q = 15 (> QC2) in the peripheral layer. Here, the interface is well defined and 
lies completely below the trapping zone. When Q = 50, the trapping zone moves closer 
to the wall and reduces in size as seen in figure 8(c). When Q > Qc2, q1 and q2 are 
positive and q > ql ,  showing that the stream function increases from q1/2, the value at 
the interface, to q/2,  the value at the wall. But, as a@/ar < 0 at the wall, @ attains a 
maximum value at some r in (hl, h),  given by 



282 A .  Ramachandra Rao and S .  Usha 

Z 

Z 

r 

I I I I 
Z 

FIGURE 9. Streamlines in the wave frame for pumping with @ = 0.6, CY = 0.8, E = 0.6. (a) p = 5.0 
and (6) p = 0.5, trapping in the core layer; (c) p = 0.01, no trapping in the core layer. 

and the corresponding maximum value of y? is given by 

It is easily seen that @,,,(0.75) d @,&,(1.25) and the equality is achieved only when 
Q- 00. This clearly shows that the trapping zone is always present for all values of p 
and for any finite Q > Q-. But, it decreases in size with an increase in Q and reduces 
to a point on the wall when Q- co, indicating that there is no upper limit of Q for 
trapping, contrary to the prediction of Shapiro et al. (1969). 

The formation and the growth of the trapping zone in the core layer for different 
values of p is shown in figure 9 for a fixed Q = 0.6, CL = 0.8 and e = 0.6. There is no 
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FIGURE 10. Streamlines in the waveframe for copumping with Q = 8.0, tc = 0.8, 6 = 0.6. (a) ,u = 5.0, 
trapping in the peripheral layer; (6) ,u = 0.5 and (c) ,u = 0.01, no trapping in the core layer. 

trapping for the small value of ,u = 0.01 as seen from figure 9(c). As we increase ,u 
trapping develops and the bolus volume increases (figure 9(b,  a)).  The formation and 
growth of the trapping zone in the peripheral layer with increasing ,u for Q = 8.0 are 
shown in figure 10. The trapping is not significant when 14 = 0.01 (figure 1Oc) and the 
growth of the bolus with an increase in p, as observed in the case of pumping, is seen 
from figures 10(b) and lO(a). As Qc2- Qcl is an increasing function of ,u, there exists 
a p beyond which a given value Q would lie in the range (Q,, Q,,). Hence, irrespective 
of whether there is pumping or copumping, for a fixed Q trapping grows with an 
increase in ,u resulting in the trapping of the interface, and the interface remains closed 
for any further increase in p. 

The study of the bolus transport of fluid of one viscosity trapped within a fluid of 
different viscosity needs reformulation owing to the inability to determine the stream 
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FIGURE 11. The shape of the interface for a = 0.8, p = 0.5, 6 = 0.8 and for different Q. 

function given in (9a ,b)  for all z .  However, the development of the trapping of the 
interface with an increase in Q can be studied using (12) and is shown in figure 11 for 
,u = 0.5, c = 0.8, and a = 0.8. When Q = 0.9, the interface is unique and the trapping 
region, if it exists, is confined to the core layer. For sufficiently large Q, there are three 
roots for the interface equation (12) for some z ,  indicating the folding of the interface. 
For a higher value of Q, the interface appears to be trapped inside the bolus near the 
centreline. The volume of the core fluid trapped inside the closed interface decreases as 
the trapping zone detaches from the centreline and moves towards the trough of the 
wavy wall as seen from the graph for Q = 50. When Q = 120 > Qe2, a unique interface 
is seen once again, and in this case the trapping zone moves completely to the 
peripheral layer. Hence, it appears that the upper limit of trapping in the core layer and 
the lower limit of trapping in the peripheral layer always lie in the range (Q,,, Q,,). 

The authors thank the referees for their valuable suggestions. 
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